Reverse class critical multigraphs
نویسندگان
چکیده
منابع مشابه
An adjacency lemma for critical multigraphs
In edge colouring it is often useful to have information about the degree distribution of the neighbours of a given vertex. For example, the well known Vizing’s Adjacency Lemma provides a useful lower bound on the number of vertices of maximum degree adjacent to a given one in a critical graph. We consider an extension of this problem, where we seek information on vertices at distance two from ...
متن کاملChromatic-index critical multigraphs of order 20
A multigraph M with maximum degree (M) is called critical, if the chromatic index 0 (M) > (M) and 0 (M ? e) = 0 (M) ? 1 for each edge e of M. The weak critical graph conjecture 1, 7] claims that there exists a constant c > 0 such that every critical multigraph M with at most c (M) vertices has odd order. We disprove this conjecture by constructing critical multigraphs of order 20 with maximum d...
متن کاملCritical behaviors and critical values of branching random walks on multigraphs
We consider weak and strong survival for branching random walks on multigraphs with bounded degree. We prove that, at the strong critical value, the process dies out locally almost surely. We relate the weak critical value to a geometrical parameter of the multigraph. For a large class of multigraphs (which enlarges the class of quasi-transitive or regular graphs) we prove that, at the weak cri...
متن کاملRemovable Circuits in Multigraphs
We prove the following conjecture of Bill Jackson ( J. London Math. Soc. (2) 21 (1980) p. 391). If G is a 2-connected multigraph with minimum degree at least 4 and containing no Petersen minor, then G contains a circuit C such that G E(C) is 2-connected. In fact, G has at least two edge-disjoint circuits which can serve as C. Until now, the conjecture had been veri ed only for planar graphs and...
متن کاملRandomly Mt−decomposable Multigraphs and M2−equipackable Multigraphs
A graph G is called randomly H − decomposable if every maximal H − packing in G uses all edges in G. G is called H − equipackable if every maximal H − packing in G is also a maximum H − packing in G. M2 − decomposable graphs, randomly M2 − decomposable graphs and M2 − equipackable graphs have been characterized. The definitions could be generalized to multigraphs. And M2 − decomposable multigra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1988
ISSN: 0012-365X
DOI: 10.1016/0012-365x(88)90059-3