Reverse class critical multigraphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An adjacency lemma for critical multigraphs

In edge colouring it is often useful to have information about the degree distribution of the neighbours of a given vertex. For example, the well known Vizing’s Adjacency Lemma provides a useful lower bound on the number of vertices of maximum degree adjacent to a given one in a critical graph. We consider an extension of this problem, where we seek information on vertices at distance two from ...

متن کامل

Chromatic-index critical multigraphs of order 20

A multigraph M with maximum degree (M) is called critical, if the chromatic index 0 (M) > (M) and 0 (M ? e) = 0 (M) ? 1 for each edge e of M. The weak critical graph conjecture 1, 7] claims that there exists a constant c > 0 such that every critical multigraph M with at most c (M) vertices has odd order. We disprove this conjecture by constructing critical multigraphs of order 20 with maximum d...

متن کامل

Critical behaviors and critical values of branching random walks on multigraphs

We consider weak and strong survival for branching random walks on multigraphs with bounded degree. We prove that, at the strong critical value, the process dies out locally almost surely. We relate the weak critical value to a geometrical parameter of the multigraph. For a large class of multigraphs (which enlarges the class of quasi-transitive or regular graphs) we prove that, at the weak cri...

متن کامل

Removable Circuits in Multigraphs

We prove the following conjecture of Bill Jackson ( J. London Math. Soc. (2) 21 (1980) p. 391). If G is a 2-connected multigraph with minimum degree at least 4 and containing no Petersen minor, then G contains a circuit C such that G E(C) is 2-connected. In fact, G has at least two edge-disjoint circuits which can serve as C. Until now, the conjecture had been veri ed only for planar graphs and...

متن کامل

Randomly Mt−decomposable Multigraphs and M2−equipackable Multigraphs

A graph G is called randomly H − decomposable if every maximal H − packing in G uses all edges in G. G is called H − equipackable if every maximal H − packing in G is also a maximum H − packing in G. M2 − decomposable graphs, randomly M2 − decomposable graphs and M2 − equipackable graphs have been characterized. The definitions could be generalized to multigraphs. And M2 − decomposable multigra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1988

ISSN: 0012-365X

DOI: 10.1016/0012-365x(88)90059-3